additional authors not shown
Abstract:Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
Abstract:Training agentic models for terminal-based tasks critically depends on high-quality terminal trajectories that capture realistic long-horizon interactions across diverse domains. However, constructing such data at scale remains challenging due to two key requirements: \textbf{\emph{Executability}}, since each instance requires a suitable and often distinct Docker environment; and \textbf{\emph{Verifiability}}, because heterogeneous task outputs preclude unified, standardized verification. To address these challenges, we propose \textbf{TerminalTraj}, a scalable pipeline that (i) filters high-quality repositories to construct Dockerized execution environments, (ii) generates Docker-aligned task instances, and (iii) synthesizes agent trajectories with executable validation code. Using TerminalTraj, we curate 32K Docker images and generate 50,733 verified terminal trajectories across eight domains. Models trained on this data with the Qwen2.5-Coder backbone achieve consistent performance improvements on TerminalBench (TB), with gains of up to 20\% on TB~1.0 and 10\% on TB~2.0 over their respective backbones. Notably, \textbf{TerminalTraj-32B} achieves strong performance among models with fewer than 100B parameters, reaching 35.30\% on TB~1.0 and 22.00\% on TB~2.0, and demonstrates improved test-time scaling behavior. All code and data are available at https://github.com/Wusiwei0410/TerminalTraj.
Abstract:Fairness in Federated Learning (FL) is emerging as a critical factor driven by heterogeneous clients' constraints and balanced model performance across various scenarios. In this survey, we delineate a comprehensive classification of the state-of-the-art fairness-aware approaches from a multifaceted perspective, i.e., model performance-oriented and capability-oriented. Moreover, we provide a framework to categorize and address various fairness concerns and associated technical aspects, examining their effectiveness in balancing equity and performance within FL frameworks. We further examine several significant evaluation metrics leveraged to measure fairness quantitatively. Finally, we explore exciting open research directions and propose prospective solutions that could drive future advancements in this important area, laying a solid foundation for researchers working toward fairness in FL.
Abstract:High-dimensional structural MRI (sMRI) images are widely used for Alzheimer's Disease (AD) diagnosis. Most existing methods for sMRI representation learning rely on 3D architectures (e.g., 3D CNNs), slice-wise feature extraction with late aggregation, or apply training-free feature extractions using 2D foundation models (e.g., DINO). However, these three paradigms suffer from high computational cost, loss of cross-slice relations, and limited ability to extract discriminative features, respectively. To address these challenges, we propose Multimodal Visual Surrogate Compression (MVSC). It learns to compress and adapt large 3D sMRI volumes into compact 2D features, termed as visual surrogates, which are better aligned with frozen 2D foundation models to extract powerful representations for final AD classification. MVSC has two key components: a Volume Context Encoder that captures global cross-slice context under textual guidance, and an Adaptive Slice Fusion module that aggregates slice-level information in a text-enhanced, patch-wise manner. Extensive experiments on three large-scale Alzheimer's disease benchmarks demonstrate our MVSC performs favourably on both binary and multi-class classification tasks compared against state-of-the-art methods.
Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:This paper introduces a novel approach to securing machine learning model deployments against potential distribution shifts in practical applications, the Total Variation Out-of-Distribution (TV-OOD) detection method. Existing methods have produced satisfactory results, but TV-OOD improves upon these by leveraging the Total Variation Network Estimator to calculate each input's contribution to the overall total variation. By defining this as the total variation score, TV-OOD discriminates between in- and out-of-distribution data. The method's efficacy was tested across a range of models and datasets, consistently yielding results in image classification tasks that were either comparable or superior to those achieved by leading-edge out-of-distribution detection techniques across all evaluation metrics.
Abstract:Code completion has become a central task, gaining significant attention with the rise of large language model (LLM)-based tools in software engineering. Although recent advances have greatly improved LLMs' code completion abilities, evaluation methods have not advanced equally. Most current benchmarks focus solely on functional correctness of code completions based on given context, overlooking models' ability to follow user instructions during completion-a common scenario in LLM-assisted programming. To address this limitation, we present the first instruction-guided code completion benchmark, Controllable Code Completion Benchmark (C3-Bench), comprising 2,195 carefully designed completion tasks. Through comprehensive evaluation of over 40 mainstream LLMs across C3-Bench and conventional benchmarks, we reveal substantial gaps in instruction-following capabilities between open-source and advanced proprietary models during code completion tasks. Moreover, we develop a straightforward data synthesis pipeline that leverages Qwen2.5-Coder to generate high-quality instruction-completion pairs for supervised fine-tuning (SFT). The resulting model, Qwen2.5-Coder-C3, achieves state-of-the-art performance on C3-Bench. Our findings provide valuable insights for enhancing LLMs' code completion and instruction-following capabilities, establishing new directions for future research in code LLMs. To facilitate reproducibility and foster further research in code LLMs, we open-source all code, datasets, and models.
Abstract:Large language models (LLMs) are being increasingly integrated into practical hardware and firmware development pipelines for code generation. Existing studies have primarily focused on evaluating the functional correctness of LLM-generated code, yet paid limited attention to its security issues. However, LLM-generated code that appears functionally sound may embed security flaws which could induce catastrophic damages after deployment. This critical research gap motivates us to design a benchmark for assessing security awareness under realistic specifications. In this work, we introduce HardSecBench, a benchmark with 924 tasks spanning Verilog Register Transfer Level (RTL) and firmware-level C, covering 76 hardware-relevant Common Weakness Enumeration (CWE) entries. Each task includes a structured specification, a secure reference implementation, and executable tests. To automate artifact synthesis, we propose a multi-agent pipeline that decouples synthesis from verification and grounds evaluation in execution evidence, enabling reliable evaluation. Using HardSecBench, we evaluate a range of LLMs on hardware and firmware code generation and find that models often satisfy functional requirements while still leaving security risks. We also find that security results vary with prompting. These findings highlight pressing challenges and offer actionable insights for future advancements in LLM-assisted hardware design. Our data and code will be released soon.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning and generation, serving as the foundation for advanced persona simulation and Role-Playing Language Agents (RPLAs). However, achieving authentic alignment with human cognitive and behavioral patterns remains a critical challenge for these agents. We present HUMANLLM, a framework treating psychological patterns as interacting causal forces. We construct 244 patterns from ~12,000 academic papers and synthesize 11,359 scenarios where 2-5 patterns reinforce, conflict, or modulate each other, with multi-turn conversations expressing inner thoughts, actions, and dialogue. Our dual-level checklists evaluate both individual pattern fidelity and emergent multi-pattern dynamics, achieving strong human alignment (r=0.91) while revealing that holistic metrics conflate simulation accuracy with social desirability. HUMANLLM-8B outperforms Qwen3-32B on multi-pattern dynamics despite 4x fewer parameters, demonstrating that authentic anthropomorphism requires cognitive modeling--simulating not just what humans do, but the psychological processes generating those behaviors.
Abstract:Although the Gradient Boosted Decision Trees (GBDTs) dominate industrial tabular applications, upgrading legacy models in high-concurrency production environments still faces prohibitive retraining costs and systemic risks. To address this problem, we present NSR-Boost, a neuro-symbolic residual boosting framework designed specifically for industrial scenarios. Its core advantage lies in being "non-intrusive". It treats the legacy model as a frozen model and performs targeted repairs on "hard regions" where predictions fail. The framework comprises three key stages: first, finding hard regions through residuals, then generating interpretable experts by generating symbolic code structures using Large Language Model (LLM) and fine-tuning parameters using Bayesian optimization, and finally dynamically integrating experts with legacy model output through a lightweight aggregator. We report on the successful deployment of NSR-Boost within the core financial risk control system at Qfin Holdings. This framework not only significantly outperforms state-of-the-art (SOTA) baselines across six public datasets and one private dataset, more importantly, shows excellent performance gains on real-world online data. In conclusion, it effectively captures long-tail risks missed by traditional models and offers a safe, low-cost evolutionary paradigm for industry.